

ОСОБЕННОСТИ СОЗДАНИЯ ТОНКОПЛЕНОЧНЫХ ОАВ-РЕЗОНАТОРОВ С БРЭГГОВСКИМ ОТРАЖАТЕЛЕМ

Торгаш Т.Н., к.т.н., н.с. АО «ОНИИП», с.н.с. ИРФЭ ОНЦ СО РАН

Омск - 2020

Введение

Тонкопленочные ОАВ-резонаторы являются перспективными элементами при создании устройств частотной селекции и генерации сигналов для систем связи, радиолокации и радионавигации в диапазоне частот от 2 до 20 ГГц.

Достоинства тонкопленочных ОАВ-резонаторов:

- Малые габариты;
- Высокая надежность;
- Температурная стабильность;
- Конструктивная и технологическая совместимость с интегральными

схемами и устройствами функциональной электроники.

Введение

Целью работы является исследование влияния конструктивных и технологических параметров на акустические характеристики брэгговского отражателя и электрические характеристики тонкопленочного OAB-резонатора.

Рис. 1. Конструкция ОАВ-резонатора с брэгговским отражателем.

Рис. 2. Частотная зависимость модуля входного электрического импеданса ОАВ-резонатора с брэгговским отражателем.

о Входной акустический импеданс:

$$Z_{\text{отраж}}^{(N)} = Z_{c} \frac{Z_{1}^{(N-1)} \cos \beta h_{c} + j Z_{c} \sin \beta h_{c}}{Z_{c} \cos \beta h_{c} + j Z_{1}^{(N-1)} \sin \beta h_{c}} \quad .$$
(1)

о Коэффициент отражения (R):

$$R = \frac{Z_{\text{отраж}}^{(N)} - Z_{\text{пьезо}}}{Z_{\text{отраж}}^{(N)} + Z_{\text{пьезо}}}$$
 (2)

о Коэффициент пропускания (T):

$$T = 10 \cdot \lg \left(1 - \left| R \right|^2 \right) \quad , \tag{3}$$

 где Z_{отраж} – входной акустический импеданс брэгговского отражателя, включая подложку; Z_{пьезо} – акустический импеданс пьезоэлектрической пленки (ZnO или AIN).

1) Одномерная модель Мэзона

о Входной электрический импеданс тонкопленочного ОАВ-резонатора:

$$Z_{\rm BX} = \frac{1}{i\omega C_0} \left\{ 1 + \frac{k_{\rm t}^2}{\gamma} \frac{i(Z_{\rm BPX}^{\rm BepX} + Z_{\rm BN}^{\rm HEXH}) Z_{\rm II} \sin \gamma - 2 Z_{\rm II}^2 (1 - \cos \gamma)}{(Z_{\rm II}^2 + Z_{\rm BII}^{\rm BepX} Z_{\rm BII}^{\rm HEXH}) \sin \gamma - i(Z_{\rm BII}^{\rm BepX} + Z_{\rm BII}^{\rm HEXH}) Z_{\rm II} \cos \gamma} \right\} \quad , (4)$$

где $\gamma = \frac{\omega n_{\pi}}{v_{\pi}}$ - разность фаз на пьезоэлектрическом слое толщиной h_{π} .

2) Модель Баттерворта-ван Дейка

Рис. 3. Эквивалентная электрическая схема резонатора по модифицированной модели Баттерворта-ван Дейка.

 $C_{0} = \varepsilon_{0}\varepsilon_{r} \frac{l_{\rm el}b_{\rm el}}{d_{\rm pz}} \quad (5)$ $R_{0} = \frac{1}{2\pi C_{0}f_{\rm p}Q_{\rm p}} \quad (8)$

$$L_{\rm m} = \frac{1}{C_{\rm m} \left(2\pi f_{\rm s}\right)^2} \quad (6$$

$$R_{\rm m} = \frac{2\pi L_{\rm m} f_{\rm s}}{Q_{\rm s}} \tag{9}$$

- R₀ статическое сопротивление;
- R_m динамическое сопротивление;
- L_m динамическая индуктивность;
- С_т-динамическая емкость;
- R_{el} сопротивление электродов.

$$C_{\rm m} = C_0 \left[\left(\frac{f_{\rm p}}{f_{\rm s}} \right)^2 - 1 \right]$$
 (7)

$$R_{\rm el} = 2\rho_{\rm el} \frac{d_{\rm el}}{l_{\rm el}b_{\rm el}} \quad (10)$$

Т

				Табл	ица 1.	
Ni	Ti	Al	SiO ₂	ZnO	AIN	

	Ir	W	Au	Мо	Та	Ni	Ti	Al	SiO ₂	ZnO	AlN
Z ·10 ⁶ , кг/(м ² ·с)	120	101,0	66,0	63,1	54,8	49,5	27,3	17,3	9,7- 13,1	36,0	34,0
V _L , м/с	5350	5200	3240	6300	4100	5600	6027	6420	5960	6330	11000

Таблица 2.

Материалы	Ζ _Η /Ζ _L	Материалы	Z _H /Z _L		
Ir-Al	6,94	Ir-SiO ₂	9,16		
W-AI	5,84	W-SiO ₂	7,71		
Mo-Al	3,65	Mo-SiO ₂	4,82		
Ta-Al	3,17	Ta-SiO ₂	4,18		

Требования к материалам:

- технологичность;
- адгезия;
- малое сопротивление;
- малое R_z поверхности пленки;
- $Z_{a\kappa}$ max и min.

Параметры, влияющие на работу тонкопленочного ОАВ-резонатора

0

о Брэгговский отражатель:

- Конструктивные параметры:
 - количество слоев;
 - акустические свойства материалов.

<u>Технологические параметры:</u>

- погрешность толщины пленок;
- шероховатость поверхности пленок.

- Пьезоэлектрический преобразователь:
 - <u>
 Конструктивные параметры:</u>
 - акустические свойства слоев;
 - толщина электродов;
 - площадь электродов.

Технологические параметры:

- пьезоэлектрические свойства

пленок ZnO и AIN и других;

- электрические параметры электродов.

Влияние количества слоев брэгговского отражателя на электрические параметры ОАВ-резонатора

Рис. 4. Частотные зависимости коэффициента пропускания от числа пар слоев N брэгговского отражателя.

Рис. 5. Частотные зависимости модуля электрического импеданса резонатора от числа пар слоев N брэгговского отражателя.

Таблица 3.

Количество пар слоев брэгговского отражателя	<i>f</i> _s , ГГц	<i>f</i> _p , ГГц	<i>∆f</i> , МГц	<i>Z</i> _s , Ом	<i>Z</i> _р , Ом	<i>G</i> _{max} , мСм	Q
1	2,8964	2,97095	74,55	71,9	74,0	0,9	24
2	2,9250	2,9400	15,0	57,0	93,4	6,9	204
3	2,9280	2,9381	10,1	41,7	127,3	16,1	470
4	2,9287	2,9371	8,4	39,4	134,9	18,0	540
5	2,9287	2,9370	8,3	39,2	135,4	18,2	569

Влияние площади верхнего электрода на параметры ОАВ-резонатора

верхнего электрода резонатора.

Таблица 4.

S _{эл} , мм²	<i>f_s</i> , ГГц	<i>f_p</i> , ГГц	<i>∆f</i> , МГц	<i>Z_s</i> , Ом	<i>Z_p</i> , Ом	<i>G_{тах},</i> мСм	Q _S	<i>С₀,</i> пФ	С _т , фФ	<i>L_m</i> , нГн	<i>R_m</i> , Ом
0,010	2,92870	2,93700	8,30	39,2	135,5	18,2	569,0	0,77	4,4	675,7	21,9
0,017	2,92870	2,93730	8,60	23,2	80,3	30,7	569,6	1,30	7,6	386,2	12,5
0,026	2,92870	2,93732	8,62	15,3	53,0	46,5	570,1	1,97	11,6	254,3	8,2
0,036	2,92870	2,93737	8,67	10,8	37,5	65,6	572,3	2,78	16,5	179,2	5,8
0,048	2,92869	2,93740	8,71	8,1	28,5	87,9	572,4	3,72	22,2	133,3	4,3

Конструкция и технология изготовления ОАВ-резонатора

Функциональные слои формируют по тонкопленочной технологии с последующей фотолитографией

Рис. 9. Конфигурация верхнего электрода тонкопленочного ОАВ-резонатора.

Технология изготовления тонкопленочного ОАВ-резонатора

1) Пьезоэлектрические пленки

Таблица 5.

Кристалло- графическая ориентация, [hkil]	ZnO (JCPDS), 2θ° (θ°-угол Брэгга)	Пленка ZnO (образец), 2θ°
[0002]	34.42°	34.44 °
[1001]	36.25 °	36.38°
[1100]	56.60 °	56.70 °
[2001]	69.09 °	69.07 °
[0004]	72.42 °	72.42 °

Рис. 10. Дифрактограмма пленки оксида цинка.

S_q(CT-50)=1,5 нм

S_q(ZnO)=4 нм

2) Пленки для брэгговского отражателя

¹ S_q(AI)=3,7 нм

Технология изготовления тонкопленочного ОАВ-резонатора

Рис. 11. Топология ОАВ-резонатора.

Рис. 12. Реальная структура ОАВ-резонатора.

Измерительные зонды анализатора цепей E5071C Agilent Technologies

Рис. 13. Частотная зависимость S₁₁ для резонатора на основе пленок оксида цинка (S_q = 40 нм).

Рис. 14. Частотная зависимость S₁₁ для резонатора на основе пленок оксида цинка (S_q = 15,1 нм).

Влияние конструктивных параметров на характеристики ОАВ-резонаторов

Рис. 15. Частотные зависимости коэффициента отражения S₁₁, активной проводимости, электрического импеданса и диаграмма Смита для резонатора на основе пленок из нитрида алюминия.

Использование конструктивных параметров ОАВ-резонатора для управления его характеристиками

Таблица 6.

Nº	Пьезо- пленка	S _{эл} , MM ²	<i>f_s</i> , ГГц	<i>f_p</i> , ГГц	<i>∆f</i> , МГц	<i>Z</i> _s , Ом	<i>Z_р,</i> Ом	G _{тах} , мСм	Q _S	С ₀ , пФ	С _т , фФ	<i>L_m</i> , нГн	<i>R_m</i> , Ом
1		0,010	2,8538	2,8622	8,4	65,0	92,6	6,2	351	0,78	5,2	673,4	34,4
2		0,017	2,8297	2,8366	6,9	39,0	53,9	8,5	301	1,33	6,8	488,9	28,9
3		0,023	2,8178	2,8238	6,0	30,1	42,0	13,8	306	1,75	9,6	432,1	25,0
4	ZnO	0,026	2,8731	2,8797	6,6	26,4	37,4	18,3	267	2,02	11,3	333,1	22,5
5		0,032	2,8144	2,8215	7,1	26,1	29,3	27,4	320	2,48	12,6	254,4	14,0
6		0,040	2,8390	2,8458	6,8	17,0	23,1	34,1	350	3,03	15,1	217,9	11,1
7		0,010	2,8949	2,9071	12,2	28,8	48,2	33,5	533	0,68	5,7	526,8	18,0
8		0,017	2,9301	2,9421	12,0	23,0	40,9	61,8	494	1,32	10,8	272,3	10,1
9	AIN	0,026	2,7669	2,7791	12,2	13,2	37,4	192,6	651	2,20	19,4	170,9	4,6
10		0,032	2,7644	2,7763	11,9	9,0	35,2	334,8	787	2,91	25,2	131,7	2,9
11		0,036	2,7618	2,7745	12,7	4,7	34,1	493,2	823	3,41	31,7	104,9	2,2

Заключение

1. Приведены теоретические и практические результаты исследования влияния конструкторско-технологических параметров брэгговского отражателя на его акустические характеристики и электрические параметры тонкопленочного ОАВ-резонатора.

2. Установлено влияние шероховатости поверхности тонкопленочных слоев ОАВ-резонатора с брэгговским отражателем на его характеристики, в частности, на резонансные характеристики и добротность резонатора. При уменьшении среднеквадратичного отклонения высоты неровностей поверхности пленок алюминия в 2,7 раза добротность резонатора увеличивается в 3,5 раза. Предложен метод напыления пленок алюминия с малой шероховатостью поверхности.

3. Представленные результаты будут полезны разработчикам генераторов и фильтров СВЧ диапазона на основе тонкопленочных ОАВ-резонаторов.

Спасибо за внимание!